удн 621.643--219

Группа Е26

корпусы опор трубопроводов тэс и аэс ост 108.275.39-80

конструкция и размеры

Взамен МВН 122-64

OKII 31 1312

уназанием Министерства энергетического машиностроения от 30.06.80 No ЮН-002/5261 срон введения установлен

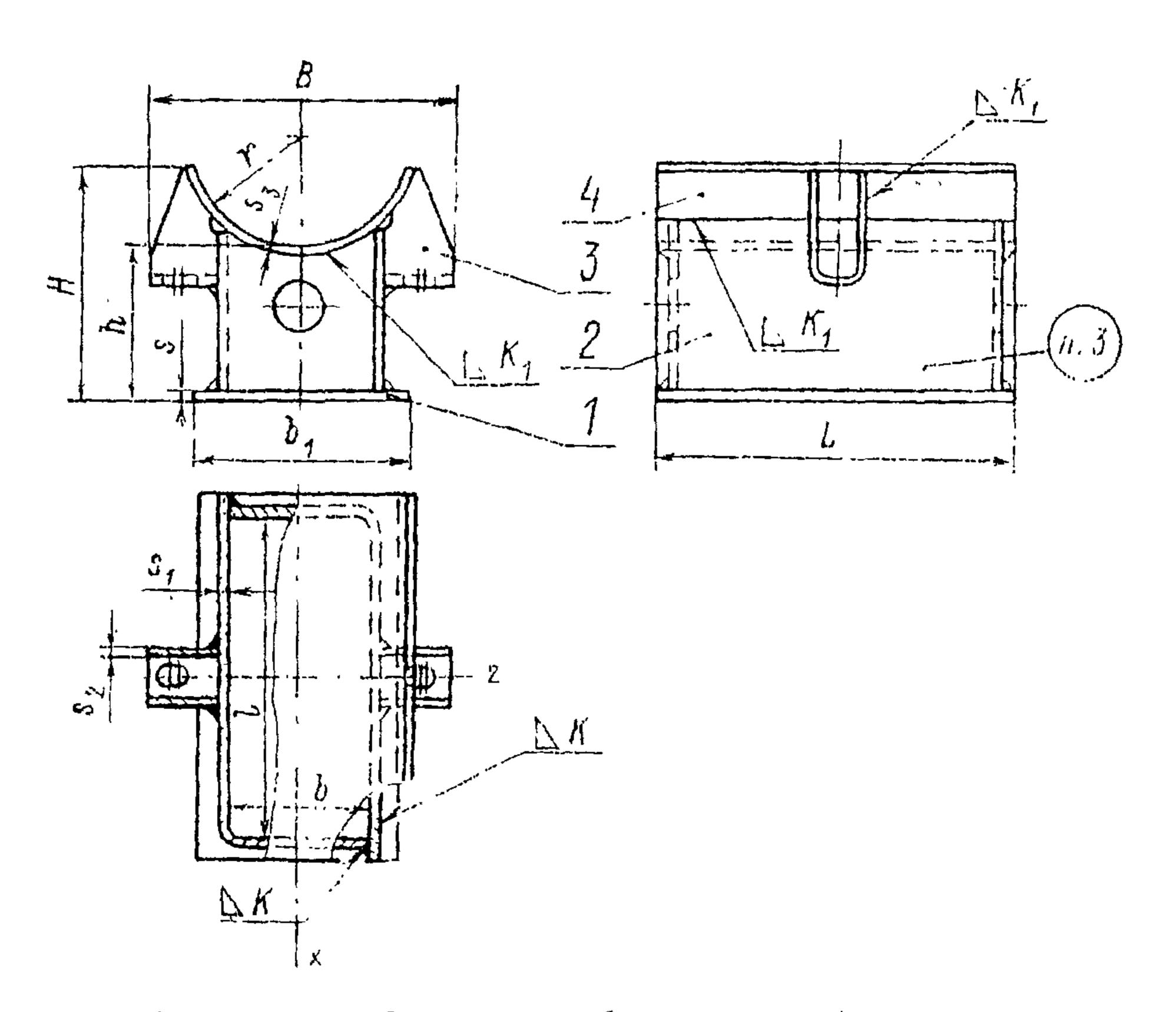
c 01.01.82 %5-

Несоблюдение стандарта преследуется по закену

1. Настоящий стандарт распространяется на корпусы однохомутовых неподвижных опор трубопроводов наружным диаметром 57—159 мм и на корпусы скользящих опор трубопроводов наружным диаметром 57—273 мм из хромомолибденованадиевых, кремнемарганцовистых, углеродистой и коррозионно-стойкой стали аустенитного класса для ТЭС и АЭС.

2. Конструкция, основные размеры и материал деталей должны соответствовать указанным на чертеже и в таблицах 1—7.

3. Маркировать: обозначение по стандарту, товарный знак.


4. Технические требования— по ОСТ 108.275.50—80.

Издание официальное

Перепечатка воспрещена

Издание с Изменением № 1, утвержденным в ноябре 1980 г.

Mockepen K 1983-

/ -- основание; 2 — угольник; 3 — проушина; 4 — подушка

Таблица 1
Основные размеры корпусов однохомутовых неподвижных опор трубопроводов из хромомолибденованадиевых сталей
Размеры в мм

Исполнение	Наружный динаметр трубопро- вода $D_{\rm M}$	B	b	\boldsymbol{b}_1	H	ħ	K	K_1	L				Sı	×2	S3	Масса, кг
01*	57	102	34	60	106	93			90	64	29		5			1,21,3
02≈	76	116	48	75	110	90	90				38			5	No. of the last of	+++ 117
03	108	167	65	100	132	100			155	120	54			*	*	3,7-4.0
04	133	202	90	125	145	105	6	5	175	140	66	6	6			5,0-5,3
05	159	228	112	150	146	98			260	225	80					7,63,

^{*} Исполнения 01 и 02 использовать для корпусов скользящих опор.

Таблица 2 Основные размеры корпусов однохомутовых неподвижных опор трубопроводов из углеродистой и кремнемарганцовистых сталей

	Размеры в мм															
Исполнение	Наружный диаметр грубопро- вода $D_{\mathtt{B}}$	\boldsymbol{B}	b	b ₁	Н	ħ	K	K_1	L			S	\$1	82	S3	Macca, Kr
06*	57	102	34	60	106	93					29					1,2
07*	76	116	48	75	110		4	4	90	64	38	4	4			1,4
*80	89	133	5 5	85	112	90					45					1,5
09	108	167	65	100	132	100			155	120	54			4	+	3,7
10	133	202	90	125	145	104	6	5	175	140	66	6	6			5,0
11	159	228	112	150	146	98	1		260	225	80				1	7,6

^{*} Исполнения 06, 07 и 08 использовать для корпусов скользящих опор.

Таблица 3
Основные размеры корпусов однохомутовых неподвижных опор трубопроводов из коррознонно-стойкой стали аустенитного класса

Размеры в мм

Исполнение	Наружный диаметр трубопро-вода $D_{\rm H}$	\boldsymbol{B}	b		H	ħ	K	K_1				\$	s_1	s ₂	s_3	Macca, Kr
12*	57	106	34	60	106	93					29					1,2
13*	76	126	48	75	110		90	4	90	64	38	+	4			1,4
14*	89	133	55	85	112	Ju Ju					45			4		1,5
15	108	167	65	100	132	100			155	120	54			*	4	3,7
16	133	202	90	125	145	104	6	5	175	140	66	6	6			5,0
17	159	228	112	150	146	98			260	225	80					7,6

[&]quot;Исполнения 12. 13 и 14 использовать для корпусов скользящих опор

Таблица 4
Основные размеры корпусов однохомутовых скользящих опор трубопроводов из хромомолибденованадиевых сталей
Размеры в мм

Исполяение	Наружный диаметр трубопро- вода Да	B		D ₁	H	ħ	K	Kı					\$1			Macca, Kr
18	108	167	65	100	132	100			80	50	54					2,2
19	133	192	96	125	145	104		5	85	~ =	66	6		3	4	-2,9-3, c
20	159	220	112	150	146	36				55	80					8,4-3,5
21	194	258	146	185	211	152	6		105	70	97		6			6,4
22	219	298	166	200	224	157		£			110					7,9
23	245	324	192	230	223	149		6	120	85	122			U	6	87
24	273	354	222	260	238	144					136					9,3

CT 108.275.39—80 Crp. 7

Таблица 5 Основные размеры корпусов однохомутовых скользящих опор трубопроводов из углеродистой и кремнемарганцовистых сталей

	Размеры в мм															
Исполнение	Наружный дияметр трубопро- вода Дя	\boldsymbol{B}	b	<i>b</i> ₁	H	12	K	Ki	L			S	SI	\$ 2	S 3	Macca, Kr
25	108	157	65	100	132	100			80	50	54					2,2
26	133	188	86	125	145	104		5	85	55	66			4	+	2,9
27	159	220	112	150	146	98				55	80	æ	G			3,4
28	194	258	146	185	211	152	6		105	70	97	6	6	6		6,4
29	219	298	166	200	224	157		6	100	٥٥	110				6	7,9
30	273	354	555 501	260	238	144			120	85	136					9,3

Таблица б Основные размеры корпусов однохомутовых скользящих опор трубопроводов из коррозионно-стойкой стали аустенитного класса

	Размеры в мм															
Исполнение	Наружный дивметр трубопро- вода Дв	B		b_1	H	h	K	K_1				S	\$\frac{1}{2}	S ₂	S3	Macca, Kr
31	108	167	65	100	132	100			80	50	54					2,2
32	133	192	90	125	145	104		5	0.5	55	66			4	4	2,9
33	159	22.	112	150	146	98			85		80	G				3.4
34	219	298	166	200	224	157	6				110	6	0			7,9
35	245	324	192	230	221	149		6	120	85	122			6	6	8,7
36	273	35 ‡ 353	- 222	260	238	144					136					9,3

(no3.4)

108

FOCT 7350-77

для паропроводов из хромо-молибденованадиевых сталей

TY 14-1-642-73

Материал деталей корпуса

для трубопроводов из углеродистой и кремиемарганцовистых сталей для ТЭС и АЭС	для трубопроводов из коррозионно- стойкой стали аустенитного класса для АЭС
---	---

TOCT 5520—79

Наименова- ние деталей	CTBO, 1	молибденована для	•—	•	ганцовистых сталей стойкой стали аустенитного к. ТЭС и АЭС для АЭС									
	HAG	Исполнение												
	Kon	01, 02	03-05, 18-24	06—08	0911, 2527	28—30	12-14	15-17, 31-33	(—·36					
Основание (поз. 1)	1	Сталь 20 ГОСТ 1577—70	Сталь 20К ГОСТ 5520—79	ВСт3 ГОСТ 14637—79										
Угольник (поз. 2)	2	Сталь ТУ 14—1		Сталь 20 ГОСТ 1577—70		Сталь 20К СТ 5520—79	Сталь 20 ГОСТ 1577—70	Сталь 2	_					
Проушина (поз. 3)	2	ТУ 14—1.		Сталь 20 ГОСТ 1577—	70	Сталь 20К ГОСТ 5520—79	Сталь 20 ГОСТ 1577—		ь 20К 5520—79					
Подушка	1	Сталь	12XM	Сталь 20		Сталь 20К		ь 12Х18Н10Т						

Пример условного обозначения корпуса исполнения 20 для однохомутовой скользящей опоры трубопровода наружным диаметром 159 мм из хромомолибденованадиевой стали:

FOCT 1577-70

КОРПУС 159 20ОСТ 108.275.39—80